

□□ **3D** □□□ □□ :

000 0 00 00:

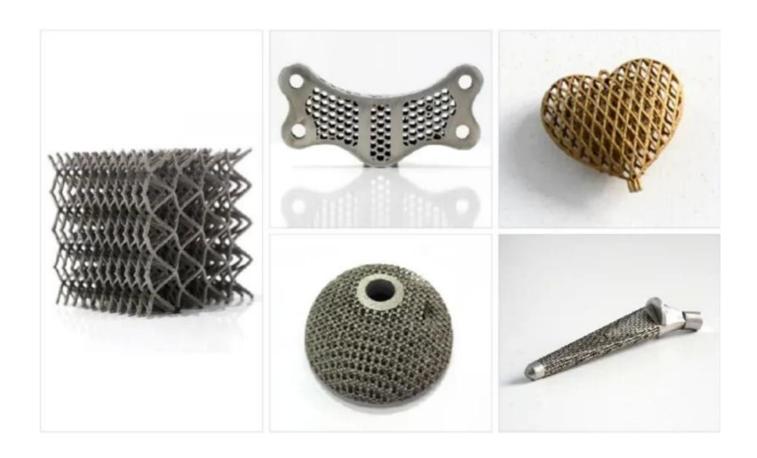
1030-1090nm Galvo

Model	PSH14-H	PSH20-H	PSH30-H CW: 1000W @ fiber laser Pulsed: 150W @ fiber lase	
Input laser power (MAX.)	CW: 1000W @ fiber laser Pulsed: 500W @ fiber laser	CW: 3000W @ fiber laser Pulsed: 1500W @ fiber laser		
Water cool/sealed scan head	yes	yes	yes	
Aperture (mm)	14	20	30	
Effective Scan Angle	±10°	±10°	±10°	
Tracking Error	0.19 ms	0.28ms	0.45ms	
Step Response Time(1% of full scale)	≤ 0.4 ms	≤ 0.6 ms	≤ 0.9 ms	
	Typical	Speed		
Positioning / jump	< 15 m/s	< 12 m/s	< 9 m/s	
Line scanning/raster scanning	< 10 m/s	< 7 m/s	< 4 m/s	
Typical vector scanning	< 4 m/s	< 3 m/s	< 2 m/s	
Good Writing quality	700 cps	450 cps	260 cps	
High writing quality	550 cps	320 cps	180 cps	
	Preci	sion		
Linearity	99.9%	99.9%	99.9%	
Resolution	≤ 1 urad	≤ 1 urad	≤ 1 urad	
Repeatability	≤ 2 urad	≤ 2 urad	≤ 2 urad	
	Temperat	ure Drift		
Offset Drift	≤ 3 urad/°C	≤ 3 urad/°C	≤ 3 urad/°C	
Qver 8hours Long-Term Offset Drift (After 15min warn-up)	≤ 30 urad	≤ 30 urad	≤ 30 urad	
Operating Temperature Range	25℃±10℃	25℃±10℃	25℃±10℃	
Signal Interface	Analog: ±10V Digital: XY2-100 protocol	Analog: ±10V Digital: XY2-100 protocol	Analog: ±10V Digital: XY2-100 protocol	
Input Power Requirement (DC)	±15V@ 4A Max RMS	±15V@ 4A Max RMS	±15V@ 4A Max RMS	

1030-1090nm F-Theta Lenses

Part Description	Focal Length (mm)	Scan Field (mm)	Max Entrance Pupil (mm)	Working Distance(mm)	Mounting Thread	
SL-(1030-1090)-170-254-(20CA)-WC	254	170x170	20	290	M85x1	
SL-(1030-1090)-250-425-(30CA)-WC	425	250x250	30	475	M132x1	
SL-(1030-1090)-142-277-(15CA)-WC	277	142x142	15	340	M85x1	
SL-(1030-1090)-254-420-(15CA)-WC	420	254x254	15	509	M85x1	
SL-(1030-1090)-230-420-(20CA)-WC	420	230x230	20	509	M85x1	
SL-(1030-1090)-410-650-(20CA)-WC	650	410x410	20	562	M85x1	

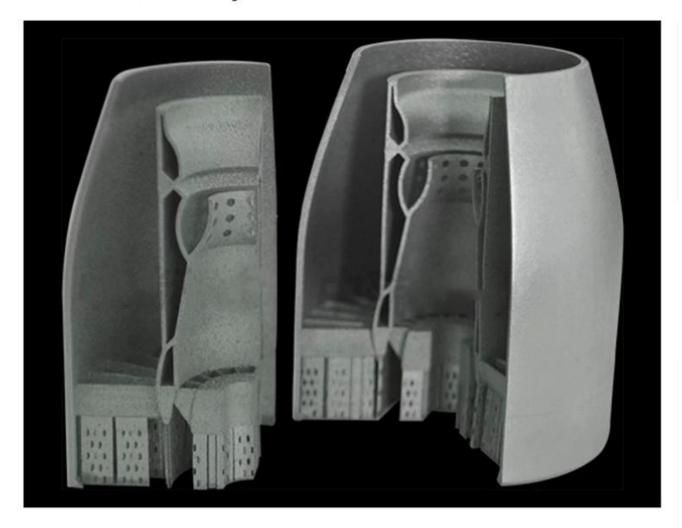
1030-1090nm Beam Expander


Part Description	Expansion Ratio	Input CA (mm)	Output CA (mm)	Housing Dia(mm)	Housing Length(mm)	Mounting Thread
BE-(1030-1090)-D26:45-1.5x-A	1.5X	18	26	44	45	M30x1 M43x0.5
BE-(1030-1090)-D53:118.6-2x-A	2X	30	53	49	118.6	M30x1
BE-(1030-1090)-D37:118.5-2x-A-WC	2X	18	37	59	118.5	M30x1

1030-1090nm Protective Window

Part Description	Diameter(mm)	Thickness(mm)	Coating	
Protective Window	98	4	AR/AR@1030-1090nm	
Protective Window	113	5	AR/AR@1030-1090nm	
Protective Window	120	5	AR/AR@1030-1090nm	
Protective Window	160	8	AR/AR@1030-1090nm	

1030-1090nm QBH Collimating Optical Module

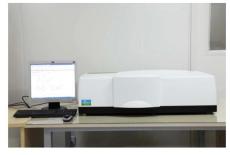

Part Description	Focal Length (mm)	Clear Aperture (mm)	NA	Coating	
CL2-(1030-1090)-30-F60-QBH-A-WC	60	28	0.22	AR/AR@1030-1090nm	
CL2-(1030-1090)-30-F75-QBH-A-WC	75	28	0.17	AR/AR@1030-1090nm	
CL2-(1030-1090)-30-F100-QBH-A-WC	100	28	0.13	AR/AR@1030-1090nm	
CL2-(1030-1090)-38-F75-QBH-A-WC	75	34	0.22	AR/AR@1030-1090nm	
CL2-(1030-1090)-38-F100-QBH-A-WC	100	34	0.16	AR/AR@1030-1090nm	
CL2-(1030-1090)-38-F125-QBH-A-WC	125	34	0.13	AR/AR@1030-1090nm	

Die Steel

Titanium Alloy

Aluminium Alloy (AlSi10Mg)

Co-Cr Alloy (MP1)



TRIOPTICS OptiSpheric 2000 AF
---Testing EFL、R、Centering Error、Wedge Angle、BFL、MTF

PerkinElmer Lambda 950---Testing Transmission and Reflectivity

Carmanhaas Coating Machine

OO OO:

- $1 \ 00)0 \ 0 \ 000 \ 0000 \ 000000$.
- $2 \ 00) \ 000 \ 000 \ 00 \ 000 \ 0 \ 000$
- 3 00) 000 00 0 00 000 00000.

- Q1. 00000 0000?
- Q2. 000 000 000?
- Q3. 000 00000?
- Q4. 000 0000000?
- ${
 m A4}: {
 m COO} = {
 m COO} =$

- Q6. $\Pi\Pi\Pi\Pi\Pi\Pi\Pi\Pi\Pi\Pi\Pi\Pi$?
- Q7. OEM [ODM [OD] [OD] [OD]?
- Q8. 000 000 000000?