》》》》》》Product Information

Product Description：

SLA（Stereolithography）is an additive manufacturing process that works by focusing an UV laser on to a vat of photopolymer resin．With the help of computer aided manufacturing or computer aided design（CAM／CAD）software，the UV laser is used to draw a pre－programmed design or shape on to the surface of the photopolymer vat．Photopolymers are sensitive to ultraviolet light，so the resin is photochemically solidified and forms a single layer of the desired 3D object．This process is repeated for each layer of the design until the 3D object is complete．

CARMANHAAS could offer customer the optical system mainly includes fast Galvanometer Scanner and F－THETA scan lens，Beam expander，Mirror，etc．（Additive Manufacturing China）

Technical Parameters:

355nm Galvo Scanner Head

Model	PSH14-H	PSH20-H	PSH30-H
Water cool/sealed scan head	yes	yes	yes
Aperture (mm)	14	20	30
Effective Scan Angle	$\pm 10^{\circ}$	$\pm 10^{\circ}$	$\pm 10^{\circ}$
Tracking Error	0.19 ms	0.28 ms	0.45 ms
Step Response Time(1\% of full scale)	$\leq 0.4 \mathrm{~ms}$	$\leq 0.6 \mathrm{~ms}$	$\leq 0.9 \mathrm{~ms}$
Typical Speed			
Positioning / jump	$<15 \mathrm{~m} / \mathrm{s}$	$<12 \mathrm{~m} / \mathrm{s}$	$<9 \mathrm{~m} / \mathrm{s}$
Line scanning/raster scanning	$<10 \mathrm{~m} / \mathrm{s}$	$<7 \mathrm{~m} / \mathrm{s}$	$<4 \mathrm{~m} / \mathrm{s}$
Typical vector scanning	$<4 \mathrm{~m} / \mathrm{s}$	$<3 \mathrm{~m} / \mathrm{s}$	$<2 \mathrm{~m} / \mathrm{s}$
Good Writing quality	700 cps	450 cps	260 cps
High writing quality	550 cps	320 cps	180 cps
Precision			
Linearity	99.9\%	99.9\%	99.9\%
Resolution	≤ 1 urad	≤ 1 urad	≤ 1 urad
Repeatability	≤ 2 urad	≤ 2 urad	≤ 2 urad
Temperature Drift			
Offset Drift	$\leq 3 \mathrm{urad} /{ }^{\circ} \mathrm{C}$	$\leq 3 \mathrm{urad} /{ }^{\circ} \mathrm{C}$	$\leq 3 \mathrm{urad} /{ }^{\circ} \mathrm{C}$
Qver 8hours Long-Term Offset Drift (After 15 min warn-up)	≤ 30 urad	$\leq 30 \mathrm{urad}$	≤ 30 urad
Operating Temperature Range	$25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$
Signal Interface	Analog: $\pm 10 \mathrm{~V}$ Digital: XY2-100 protocol	Analog: $\pm 10 \mathrm{~V}$ Digital: XY2-100 protocol	Analog: $\pm 10 \mathrm{~V}$ Digital: XY2-100 protocol
Input Power Requirement (DC)	$\pm 15 \mathrm{~V} @ 4 \mathrm{~A}$ Max RMS	$\pm 15 \mathrm{~V} @ 4 \mathrm{~A}$ Max RMS	$\pm 15 \mathrm{~V} @ 4 \mathrm{~A}$ Max RMS

355nm F-Theta Lenses

Part Description	Focal Length $(\mathbf{m m})$	Scan Field $(\mathbf{m m})$	Max Entrance Pupil (mm)	Working Distance(mm)	Mounting Thread
SL-355-360-580	580	360×360	16	660	M85x1
SL-355-520-750	750	520×520	10	824.4	M85x1
SL-355-610-840-(15CA)	840	610×610	15	910	M85x1
SL-355-800-1090-(18CA)	1090	800×800	18	1193	M85x1

Part Description	Expansion Ratio	$\begin{gathered} \text { Input CA } \\ (\mathrm{mm}) \end{gathered}$	Output CA (mm)	Housing Dia(mm)	Housing Length(mm)	Mounting Thread
BE3-355-D30:84.5-3x-A(M30*1-M43*0.5)	3 X	10	33	46	84.5	M $30 \times 1-\mathrm{M} 43 * 0.5$
BE3-355-D33:84.5-5x-A(M30*1-M43*0.5)	5X	10	33	46	84.5	M $30 * 1-\mathrm{M} 43 * 0.5$
BE3-355-D33:80.3-7x-A(M30*1-M43*0.5)	7X	10	33	46	80.3	M30*1-M43*0.5
BE3-355-D30:90-8x-A(M30*1-M43*0.5)	8X	10	33	46	90.0	M30*1-M43*0.5
BE3-355-D30:72-10x-A(M30*1-M43*0.5)	10X	10	33	46	72.0	M 30 *1-M43*0.5

355nm Mirror

Part Description	Diameter(mm)	Thickness(mm)	Coating
355 Mirror	30	3	HR@355nm,45 AOI
355 Mirror	20	5	HR@355nm,45 AOI
355 Mirror	30	5	HR@355nm, $45^{\circ} \mathrm{AOI}$

3D Printing metal wholesales China

Appearance:	White liquid
Density:	$1.10 \mathrm{~g} / \mathrm{cm}^{3} \oplus 25^{\circ} \mathrm{C}$
Viscosity:	$450 \mathrm{CPS} \oplus 25^{\circ} \mathrm{C}$
Dp:	20.16 mm
Ec:	$8.5 \mathrm{~mJ} / \mathrm{cm}^{2}$

Bending Modulus: $1500 \sim 1700 \mathrm{MPa}$
Bending Strength: $\quad 55 \sim 60 \mathrm{MPa}$
Notched Impact Strength: $\quad 60 \sim 68 \mathrm{~J} / \mathrm{m}$
1.2 mm Bend Angle: $140 \sim 170^{\circ}$

Bending Modulus: $2688 \sim 2790 \mathrm{MPa}$
Bending Strength: $\quad 66 \sim 73 \mathrm{MPa}$
Notched Impact Strength: $60 \sim 68 \mathrm{~J} / \mathrm{m}$
Hardness: 88
Elongation at break: $\quad 10 \sim 15 \%$
HDT Heat deflection temperature: $52^{\circ} \mathrm{C}$
Tg Glass transition temperature: $62^{\circ} \mathrm{C}$
CTE Coefficient of thermal expansion: $93^{*} \mathrm{E}-6$

PHYSICAL CHARACTERISTICS
(LIQUID STATE)

MOLDING

PERFORMANCE A
MOLPRINGANCE
(1)355nm point laser
\$330mW power
© $9.0 \mathrm{~m} / \mathrm{s}$ scanning @No UV post-cure

MOLDING

PERFORMANCE B
MOLDING
(1) 90 min UV post-cure

Appearance:	White liquid
Density:	$1.10 \mathrm{~g} / \mathrm{cm}^{3} \oplus 25^{\circ} \mathrm{C}$
Viscosity:	$400 \mathrm{CPS} \oplus 25^{\circ} \mathrm{C}$
Dp:	$\geq 0.16 \mathrm{~mm}$
Ec:	$7.9 \mathrm{~mJ} / \mathrm{cm}^{2}$

Bending Modulus: $\quad 2000 \sim 2300 \mathrm{MPa}$
Bending Strength: $\quad 75 \sim 85 \mathrm{MPa}$
Notched Impact Strength: $\quad 35 \sim 45 \mathrm{~J} / \mathrm{m}$
1.2 mm Bend Angle: $\geq 170 \sim 180^{\circ}$

Bending Modulus: $2813 \sim 3520 \mathrm{MPa}$
Bending Strength: $83 \sim 90 \mathrm{MPa}$
Notched Impact Strength: $42 \sim 50 \mathrm{~J} / \mathrm{m}$
Hardness: 87~92
Elongation at break: 13~20\%
HDT Heat deflection temperature: $52^{\circ} \mathrm{C}$
Tg Glass transition temperature: $62^{\circ} \mathrm{C}$
CTE Coefficient of thermal expansion: $93^{*} \mathrm{E}-6$

PHYSICAL

 CHARACTERISTICS(LIQUID STATE)

MOLDING

PERFORMANCE A
MORFORMANCE
© 355 nm point laser
©150 mW power © $5.0 \mathrm{~m} / \mathrm{s}$ scanning © C No UV post-cure

MOLDING

PERFORMANCE B
MORIDING
©90min UV post-cure

Appearance:	Transparent liquid Pale Purple
Density:	$1.10 \mathrm{~g} / \mathrm{cm}^{3} \oplus 25^{\circ} \mathrm{C}$
Viscosity:	$190 \mathrm{CPS} @ 25^{\circ} \mathrm{C}$
Dp:	$\geq 0.18 \mathrm{~mm}$
Ec:	$6.9 \mathrm{~mJ} / \mathrm{cm}^{2}$

Appearance: High Transparency
Transmittance: 85\% (MAX)
Bending Modulus: $1500 \sim 1700 \mathrm{MPa}$
Bending Strength: $45 \sim 55 \mathrm{MPa}$
Notched Impact Strength: $25 \sim 35 \mathrm{~J} / \mathrm{m}$
1.2 mm Bend Angle: $140 \sim 170^{\circ}$

Bending Modulus: $1890 \sim 2340 \mathrm{MPa}$
Bending Strength: $55 \sim 62 \mathrm{MPa}$
Notched Impact Strength: $\quad 40 \sim 55 \mathrm{~J} / \mathrm{m}$
Hardness: 79
Elongation at break: $10 \sim 15 \%$
HDT Heat deflection temperature: $52^{\circ} \mathrm{C}$
Tg Glass transition temperature: $62^{\circ} \mathrm{C}$
CTE Coefficient of thermal expansion: 93*E-6

Real ABS (ABS Like)

PHYSICAL CHARACTERISTICS
(LIQUID STATE)

MOLDING

 PERFORMANCE AMORPIING
©355nm point laser @330mW power © $5.0 \mathrm{~m} / \mathrm{s}$ scanning ©No UV post-cure

MOLDING PERFORMANCE B
MOLDING
© 90 min UV post-cure

Appearance:	Bright yellow liquid
Density:	$1.10 \mathrm{~g} / \mathrm{cm}^{3} @ 25^{\circ} \mathrm{C}$
Viscosity:	$400 \mathrm{CPS} @ 25^{\circ} \mathrm{C}$
Dp:	$\geq 0.16 \mathrm{~mm}$
Ec:	$7.9 \mathrm{~mJ} / \mathrm{cm}^{2}$

Bending Modulus: $2000 \sim 2300 \mathrm{MPa}$
Bending Strength: $75 \sim 85 \mathrm{MPa}$
Notched Impact Strength: $\quad 35 \sim 45 \mathrm{~J} / \mathrm{m}$
1.2 mm Bend Angle: $\geq 170 \sim 180^{\circ}$

Bending Modulus: $\quad 2813 \sim 3520 \mathrm{MPa}$
Bending Strength: $83 \sim 90 \mathrm{MPa}$
Notched Impact Strength: $42 \sim 50 \mathrm{~J} / \mathrm{m}$
Hardness: 87~92
Elongation at break: 13~20\%
HDT Heat deflection temperature: $52^{\circ} \mathrm{C}$
Tg Glass transition temperature: $62^{\circ} \mathrm{C}$
CTE Coefficient of thermal expansion: $93^{*} \mathrm{E}-6$

Red Wood (Tooling Board Like)

PHYSICAL CHARACTERISTICS
(LIQUID STATE)

MOLDING PERFORMANCE A

MOLDING © 9355 nm point laser (1) 330 mW power © $5.0 \mathrm{~m} / \mathrm{s}$ scanning @No UV post-cure

MOLDING

PERFORMANCE B
MOREING
© 90 min UV post-cure

Appearance: Epoxy Tooling Board Like (Pink) liquid
Density: $\quad 1.10 \mathrm{~g} / \mathrm{cm}^{3} \oplus 25^{\circ} \mathrm{C}$
Viscosity: $\quad 400 \mathrm{CPS} @ 25^{\circ} \mathrm{C}$
Dp: $\quad \geq 0.16 \mathrm{~mm}$
Ec: $\quad 7.9 \mathrm{~mJ} / \mathrm{cm}^{2}$

Bending Modulus: $2000 \sim 2300 \mathrm{MPa}$
Bending Strength: $75 \sim 85 \mathrm{MPa}$
Notched Impact Strength: $\quad 35 \sim 45 \mathrm{~J} / \mathrm{m}$
1.2 mm Bend Angle: $\geq 170 \sim 180^{\circ}$

Bending Modulus: $2813 \sim 3520 \mathrm{MPa}$
Bending Strength: $83 \sim 90 \mathrm{MPa}$
Notched Impact Strength: $42 \sim 50 \mathrm{~J} / \mathrm{m}$
Hardness: 87~92
Elongation at break: 13~20\%
HDT Heat deflection temperature: $52^{\circ} \mathrm{C}$
Tg Glass transition temperature: $62^{\circ} \mathrm{C}$
CTE Coefficient of thermal expansion: 93*E-6

Desktop FDM

Industrial FDM

Desktop SLA

Industrial SLA

Industrial SLS

》》》》》》Factory

TRIOPTICS OptiSpheric 2000 AF
---Testing EFL, R, Centering Error, Wedge Angle, BFL, MTF

PerkinElmer Lambda 950---Testing Transmission and Reflectivity

》》》》》）Certificate\＆Exhibition

》》＞＞＞＞＞Packing List

Return Policy:

Should returns be required：
Step 1）Contact us with this website email．
Step 2）Provide as much detail as possible about the problem you are having．
Step 3）Authorization to return the item will be issued．
Step 4）Return the item for the agreed replacement or refund．

Logistics：

（1）For Laser Optics order delivery，can be optional with DHL，UPS，FedEx，TNT，EMS，ets
（2）For Laser machine order delivery，can be optional with terms of EXWork FOB，CNF，CIF By Air or by Sea based on the buyer＇s forwarders or ours．

》》》》》 ${ }^{\text {FAQ }}$

Q1．Are you a manufacturer？
A1：Yes，we are professional and experienced manufacturer with our own molds and production lines．
Q2．How about quality of products？
A2：Our technicians and QC teams test the products one by one using aging line，professional devices and instruments to ensure the quality for all products．

Q3．How about price？
A3：We are a manufacturer and always offer our customers the most competitive prices．
Q4．How to place an order？
A4：Contact with online service，or sent email to us directly，we will reply to you with product price， specifications，packing etc．soon．Thank you．

Q5．May I send material to test marking performance？
A5：Yes！You are welcome to send material to test our superior quality and service．
Q6．Can I visit your factory？
A6：Yes，welcome to visit our factory at your convenient time．
Q7．How can I make OEM or ODM orders？
A7：We have different print processing for different OEM／ODM orders．Please contact us with online service or send email to us directly．

Q8．How should I pay for my orders？

A8: You can pay by T/T would be available for qualified bank and MOQ required for each order.

